

EXPLORING ADVERSARIAL EXAMPLES IN MALWARE DETECTION

Octavian Suciu, Scott E. Coull, Jeffrey Johns

PROBLEM

Adversarial Examples in Image Classification:

Adversarial Examples in Malware Detection

Are adversarial malware examples realistic?
Are attacks effective against production-scale training sets?

ATTACKS

Slack = compiler-generated misalignment of physical and virtual addresses

EXPERIMENTAL SETUP

Victim Model: MalConv²

Architecture: pooling 128 non-overlapping convolutional kernels

• ≤ 128 unfragmented input sequences used in classification

Training Sets:

- Mini: in line with prior work³, 8,500 samples
- EMBER: publicly available corpus of 1.1M samples⁴
- Full: production scale dataset of 12.5M samples

1 Explaining and harnessing adversarial examples [Goodfellow+ 2014]

2 Malware detection by eating a whole exe[Raff+ 2017],

3 Adversarial Malware Binaries: Evading Deep Learning for Malware Detection in Executables [Kolosnjaji+ 2018] 4 EMBER: An Open Dataset for Training Static PE Malware Machine Learning Models [Anderson+ 2018]

FINDINGS

Model Robustness Influences Results

MalConv Contains Architectural Weaknesses

Clask FCM vacults

Unfragmented input flows to last layer

• effect of Slack bytes is amplified by context

Trade-off between Success Rate and Leverage

due to Slack size and gradient magnitude

Single-Step Samples are Not Transferable

Transfer samples between EMBER ⇌ Full

using FGM Append & Slack FGM

Only 3/400 attack samples are successfully transferred

small gradient magnitude in EMBER

Thursday 10:45AM

© DLS Workshop