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PROBLEM

Adversarial Examples in Image Classification:

“panda” oerturbation “gibbon”

Adversarial Examples in Malware Detection
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“malware” oerturbation corrupted file

Are adversarial malware examples realistic?
Are attacks effective against production-scale training sets?

ATTALCKS

Benigh Append

‘\x43\x00\xF1\x24\xOO\x3D + \x43\x00\xF1\x24\x00\x3D I \XE3\x41

Malware sample append section of a benign program

FGM Append
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Malware sample append gradient-based noise
via single-step FGM!

Slack FGM

\x43\x00\xF1\x24\x00\x3D
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Malware sample add single-step FGM noise
via safe slack region
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EXPLORING ADVERSARIAL
EXAMPLES IN MALWARE DETECTION

el 1N
PE Header Section 1 Section 2 Slack Section 3 | Slack

Slack = compiler-generated misalignment of physical and virtual addresses

EXPERIMENTAL SETUP

Victim Model: MalConv?

2MB Gated Temporal

Fully Label
Embedding —| convolution [ ) Max-Pooling —

Connected

V/

Sample —

Architecture: pooling 128 non-overlapping convolutional kernels
* < 128 unfragmented input sequences used in classification

Training Sets:

e Mini: in line with prior work?, 8,500 samples
« EMBER: publicly available corpus of 1.1IM samples*
* Full: production scale dataset of 12.5M samples

Explaining and harnessing adversarial examples [Goodfellow+ 2014]

Malware detection by eating a whole exe[Raff+ 2017],

Adversarial Malware Binaries: Evading Deep Learning for Malware Detection in Executables [Kolosnjaji+ 2018]
EMBER: An Open Dataset for Training Static PE Malware Machine Learning Models [Anderson+ 2018]
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FINDINGS

Model Robustnhess Influences Results

Success Rate at 10,000 appended bytes
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Benign Append IEGM Append
Robust model is Attack exploits
resilient against lack of positional
non-gradient attack features in MalConv

MalConv Contains Architectural Weaknesses
Slack FGM results
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% slack bytes that are modified
Unfragmented input flows to last layer
» effect of Slack bytes is amplified by context
Trade-off between Success Rate and Leverage
* due to Slack size and gradient magnitude
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Single-Step Samples are Not Transferable

Transfer samples between EMBER = Full
* using FGM Append & Slack FGM

Only 3/400 attack samples are successfully transferred
* small gradient magnitude in EMBER
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