
Efficient Malware Analysis Using 
Metric Embeddings

Scott Coull

5/16/23

Joint work with:

Ethan Rudd, David Krisiloff, Daniel Olszewski, Edward Raff, and James Holt



About Me

More than 20 years in cybersecurity research, including work in data privacy, network traffic 

analysis, censorship circumvention, malware analysis, and applied cryptography

Lead development of MalwareGuard at FireEye/Mandiant, which runs on 2M+ endpoints, tens of 

thousands of mailboxes, thousands of network devices, and billions of analyzed files

Excited about exploring problems at the intersection of research and practice, particularly 

when research assumptions do not align well with practice

Scott Coull
Head of DS Research



Objectives

Present our approach to 
reducing technical debt 
from managing multiple 
ML models for malware 
analysis tasks 
 

Share practical 
considerations when 
applying ML to malware 
analysis tasks

Discuss how to use a 
single metric embedding 
to solve multiple 
downstream tasks



Our Journey

4

Introduction

Understand the realities of 
malware analysis pipelines

Metric Embeddings

Cover the basics behind our 
approach for transferable 

embeddings

Evaluation Results

Explore how well embeddings 
worked for various malware 

analysis tasks

Summary

Review findings and discuss 
high-level takeaways



Malware Analysis in the Real World

Malware analysis is more than just detection!

Real-world malware analysis leverages 

multi-phase pipelines with complex 

dependencies

In practice, each phase can be made up of 

multiple steps of increasing complexity: 

signatures, static analysis, dynamic analysis, 

behavioral analysis, etc.

DATA SAMPLING

Ensure appropriate 
representation of sample space

RETRIEVAL

Pull back new samples for 
future training

DETECTION

Is the file malware or 
goodware?

TYPE CLASSIFICATION

What capabilities does the 
malware have?

FAMILY CLASSIFICATION

Which family does the 
malware sample belong to?

Malware Analysis 
Pipeline



Tech Debt and Machine Learning

Machine learning pipelines can easily incur significant tech debt

Automated malware analysis pipelines could require several 

different machine learning models, possibly each with their own 

feature set

Moreover, models have dependencies which means drift from one 

model naturally affects all subsequent models in the pipeline

Maintaining these models and managing their dependencies amounts 

to very real computational and monetary costs



Our Journey

Introduction

Understand the realities of 
malware analysis pipelines

Metric Embeddings

Cover the basics behind our 
approach for transferable 

embeddings

Evaluation Results

Explore how well embeddings 
worked for various malware 

analysis tasks

Summary

Review findings and discuss 
high-level takeaways

Metric Learning 101

Model Architecture

Custom Batching



Metric Learning 101

What is metric learning?

Learn a distance function that maps objects into an embedded space where 

similar objects are close together and dissimilar objects are far apart.

How do we achieve this?

1. Choose an object as our anchor and carefully select additional 

objects that are similar and dissimilar from that anchor.

2. Use a Siamese network to embed the pairs of objects with shared 

network architecture and weights

3. Use a contrastive loss to minimize distance to similar objects, 

maximized distance to dissimilar objects 

4. A margin ensures a minimum separation with dissimilar objects

Kaya, M., & Bilge, H. Ş. (2019). Deep metric learning: A survey. Symmetry, 11(9), 1066.



Why Embeddings?

Need a generic representation that is transferable to a variety of downstream tasks

Training can easily incorporate contextual and semantic information that is useful across a broad range of problems

Semantic information may even extend beyond what is readily available in original input representation

Low-dimensional output representations reduce training and storage overhead while also offering efficient indexing/retrieval



Our Embedding Approach
Attempt to replicate VirusTotal vhash clustering using metric learning

● VirusTotal vHash is an in-house similarity clustering algorithm 

value that allows you to find similar files

Initialize network with Xavier algorithm, then pretrain network with 

goodware/malware detection task on training dataset

● Pretraining is key to ensuring convergence during training

Use a custom batching algorithm to ensure we cover the full space of 

samples available to us during training

Output embeddings as low-dimensional feature representation for 

downstream models



Model Architecture

Standard feed-forward neural network in a Siamese configuration

● General configuration has worked well in prior malware tasks

● Careful with the the activations! Scaling matters here!

Input representation: 2,381 hand-engineered, static analysis features

● Header info, imports/exports, section information, byte histograms…

● Presented alongside the EMBER malware dataset

Output: Evaluated {32, 64, 128, 256} dimensions without normalization

Anderson, Hyrum S., and Phil Roth. "EMBER: An Open Dataset for Training Static PE Malware Machine Learning Models." 
arXiv preprint arXiv:1804.04637 (2018).



Batching Algorithm

Selecting good sample pairs is incredibly important for contrastive losses!

● vhash clusters contain both goodware and malware samples

● Cluster sizes are highly variable, distribution of good/malicious in the 

clusters is variable, huge number of clusters (30k+)

● Random sampling is not going to work

Developed a custom batching algorithm to ensure cluster coverage

● Divide existing vhash clusters into goodware/malware subsets

● Sample C clusters without replacement

● Sample M samples from each cluster

● Epoch continues until all clusters are sampled

Cluster 1 Cluster C

Cluster 1
Goodware

Cluster 1
Malware

Cluster C
Goodware

Cluster C
Malware…

M samples

Batch



Our Journey

Introduction

Understand the realities of 
malware analysis pipelines

Metric Embeddings

Cover the basics behind our 
approach for transferable 

embeddings

Evaluation Results

Explore how well embeddings 
worked for various malware 

analysis tasks

Summary

Review findings and discuss 
high-level takeaways

Clustering

Classification

Other Results



Experiment Setup
EMBER 2018 Dataset – Windows PE files:

● 2,381 hand-engineered, static analysis features

● 400k goodware, 400k malware

● AVCLASS to create family labels

● Type labels extracted from Microsoft family name

● vhash cluster assignments taken from VirusTotal reports

Embedding Model Training:

● SGD optimizer w/ LR = 0.001 at a max of 100 epochs

● Early stopping criterion of 0.001 for training loss

● Consider both single objective (contrastive) and 

multi-objective (contrastive + cross-entropy) variants

Transfer Model Training:

● LightGBM w/ 1,000 trees for detection

● kNN for multi-class tasks w/ k=1



Clustering Performance

Examined overall clustering performance in two ways:

● Qualitatively with t-SNE plots of the embedding space

● Quantitatively with Mean Average Precision @ R, where R is 

the number of relevant samples for the given cluster

t-SNE projection of twelve largest clusters show clear separation 

among vhash groupings

MAP @ R showed that ~50% of nearest samples retrieved were from 

the same cluster (bounding results by total samples in the cluster)



Malware Detection Task

t-SNE plot of the embedding space with goodware/malware labels 

superimposed shows good separation at both the global and local levels

Both single- and multi-objective variants perform well but below the 

baseline of LightGBM trained directly on the original 2,381 features

● Single-objective shows large increase from 32 to 64 dimensional 

embeddings, and marginal improvements after that

● Multi-objective also shows an increase from 32 to 64, but no 

improvements beyond

● Significantly higher variance in performance for multi-objective 



Malware Family Classification

Again, t-SNE plot shows some good structure w.r.t. family name, albeit 

much messier given the larger number of classes

Both variants of the embeddings were able to beat the baseline of 

the kNN model on the static features

● Both types of embeddings show reasonable gains in 

performance as embedding dimension increases

● Variance is low for both types, unlike the goodware/malware 

classification task



Malware Type Classification

Type classification task shows similar behavior to family classification, 

with multi-objective embeddings improving over baseline

● Marginal improvements in performance with increasing 

embedding dimension in both cases

● Relatively low variance in performance for the embeddings



Other Notable Results

1 2 3
Incorporate Complex Clusters into 
the Embedding Space

Replaced vhash with capabilities 
clusters from capa utility

Capa is a disassembly-based 
analyzer for executable capabilities

Embedding replicated capa clusters 
with only access to static analysis 
features!

Minor improvement on transfer tasks

Leverage Fine-Grained Info

Examined Spearman rank 
correlation coefficient to provide 
fine-grained similarity information

Inspired by Differentiable Sorting by 
Blondel et al. where Spearman is 
used as a loss to learn rankings

Spearman performs poorly on its 
own, but improves overall 
performance when added to 
contrastive loss

Examine Adversarial Robustness

Apply black box attacks using 
genetic algorithms (GAMMA) to 
end-to-end malware detection task

In some cases, the embedding 
helped improve robustness to attack 
over LightGBM baselines

In other cases, the end-to-end 
model because much less robust 
with a 100% evasion rate

https://github.com/mandiant/capa Blondel et al. "Fast differentiable sorting and ranking." 2020. Demetrio et al. "Functionality-preserving black-box optimization 
of adversarial windows malware." 2021



Our Journey

Introduction

Understand the realities of 
malware analysis pipelines

Metric Embeddings

Cover the basics behind our 
approach for transferable 

embeddings

Evaluation Results

Explore how well embeddings 
worked for various malware 

analysis tasks

Summary

Review findings and discuss 
high-level takeaways



Competitive or better than 
baselines for classification

Captures complex semantic 
concepts beyond what is 
present in the input features

Performance on 
Downstream Tasks

Reduction in storage of up to 
98% over input features

Single unified feature space 
to feed entire pipeline, 
minimizing overhead

Simplify Tech Debt for 
Malware Analysis Pipeline

Pre-training was necessary 
for stable training

Multi-objective training 
improve performance

Varying effects on adversarial 
robustness

Interesting Quirks of 
Metric Embeddings

Summary



Thank you.



MAP@R vs. Transfer Performance



Adversarial Robustness Experiments


