

Information Leakage in Encrypted Network Traffic

Attacks and Countermeasures

Scott Coull RedJack

Joint work with:

- Charles Wright (MIT LL)
- Lucas Ballard (Google)
- Fabian Monrose (UNC)
- Gerald Masson (JHU)

Encrypted Network Traffic

<u>Problem</u>: How do we stop eavesdropping?

Cryptography to the rescue!

Encrypted Network Traffic

- Encrypt the payload contents
- What about features of the network traffic itself?
 - Port numbers, packet sizes, timing info

- Traffic features may introduce a communications channel
 - Like a side-channel attack or covert channel

- Traffic features may introduce a communications channel
 - Like a side-channel attack or covert channel

- Traffic features may introduce a communications channel
 - Like a side-channel attack or covert channel

- Traffic features may introduce an communications channel
 - Like a side-channel attack or covert channel

REDJACK Preventing Information Leakage

- Information theory says we should make the distributions uniform
 - Quantize outputs to coarser levels
 - Ex: two vs. ten potential packet sizes
- What about performance?
 - Padding VoIP can introduce >42% overhead!!
 - Padding to 1500 bytes induces up to 150% overhead for HTTP!!

Implementation Problems

- Performance almost always wins over security for consumer implementations
- Results in attacks that infer contents of encrypted network traffic
 - Login passwords for SSH \rightarrow packet timing
 - Web page identities for SSL/TLS \rightarrow packet size
 - Language and phrases for VoIP \rightarrow packet size

Overview

- Illustrate potential privacy problems introduced by network traffic features:
 - Uncovering Spoken Phrases in Encrypted
 Voice over IP Conversations
- Present efficient countermeasure by moving from information theoretic model:
 - Traffic Morphing: An Efficient Defense Against Statistical Traffic Analysis

Stream cipher used to efficiently encrypt packets

Attack Intuition

Attack Intuition

Length-preserving stream cipher keeps correlation

Attack Intuition

Packet sizes carry information about the original audio

Original audio is made up of the building blocks of language called phonemes

Attack Intuition

Phrase Spotting

- How do we use the correlation between packet size and audio?
 - Build a statistical model for the sequence of packet sizes in phrase
 - Use the model to detect when a phrase of interest has occurred
- Known as phrase spotting

REDJACK **Phrase Spotting** Packets:

REDJACK **Phrase Spotting** Packets: Phrases: "spot me" "spot me" **Multiple** Sequence Insertion Alignment Deletion

REDJACK **Phrase Spotting** Packets: Phrases: "spot me" "spot me" Aligned columns known as the consensus sequence for the phrase **Represented** with a **Profile Hidden Markov Model (HMM)**

- How do we train our phrase HMM without speaker-specific data?
- What if we do not have examples of the phrase we are looking for?

- Use concatenative synthesis!
 - Break phrase pronunciation into phonemes
 - Concatenate available phonemes together

1. Split phrase into words *the bike is red*

 Split phrase into words *the bike is red*
 Break words into phonemes *dh ah b ay k ih z r eh d*

 Split phrase into words *the bike is red*
 Break words into phonemes *dh ah b ay k ih z r eh d*
 Replace phonemes with packet sizes

 Split phrase into words *the bike is red*
 Break words into phonemes *dh ah b ay k ih z r eh d*
 Replace phonemes with packet sizes

 Split phrase into words *the bike is red*
 Break words into phonemes *dh ah b ay k ih z r eh d*
 Replace phonemes with packet sizes

 Split phrase into words *the bike is red*
 Break words into phonemes *dh ah b ay k ih z r eh d*
 Replace phonemes with packet sizes

- Split phrase into words the bike is red
 Break words into phonemes dh ah b ay k ih z r eh d
 Replace phonemes with packet sizes
- 4. Repeat to capture variations in speech

Evaluation

- TIMIT Dataset:
 - 462 training speakers, 168 testing speakers
 - 122 distinct phrases
 - Diverse set of dialects, pronunciations, etc.
- Use information retrieval metrics:
 - Recall = TP / (TP+FN)
 - Precision = TP / (TP+FP)

Results

Results

- Method is robust to variations in the audio
 - Noise
 - Gender
 - Dialect
 - Wide-band vs. Narrow-band
- Surprising amount of information leakage from encrypted VoIP traffic
 - More recent work produces transcripts

Countermeasures

- Padding can be effective for some types of information, but not others
- Can we do better?

Protocol	Leaked Info.	Block Size	Accuracy	Overhead
VoIP	Phrases	256-bit	0.4%	16.5%
	Language	512-bit	6.9%	42.2 %
нттр	Web Pages	1500 bytes	35.9%	140.8 %

Traffic Morphing

- What if we could morph one class of traffic to look like another?
 - Ex: Farsi appears to be English
- Use convex optimization to stochastically change packet sizes to:
 - Minimize overhead
 - Ensure distribution "looks" like the target

Source Distribution

(Packet Sizes for Farsi)

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

Target Distribution

(Packet Sizes for English)

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix}$$

Find morphing matrix A such that:

$$\begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

Treat each column as a probability distribution for morphing source packet size s_i to target

$$\begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

- Underspecified system of equations:
 - n² unknowns and 2n equations
 - Infinitely many solutions
- Choose one that minimizes the cost:

minimize
$$f_0(A)$$

subject to $\sum_{j=1}^n a_{ij} x_j = y_i, \quad \forall i \in [1, n]$
 $\sum_{i=1}^n a_{ij} = 1, \quad \forall j \in [1, n]$
 $a_{ij} \ge 0, \quad \forall i, j \in [1, n]$

- Underspecified system of equations:
 - n² unknowns and 2n equations
 - Infinitely many solutions
- Choose one that minimizes the cost:

minimize
$$f_0(A)$$
 Overhead
subject to $\sum_{j=1}^n a_{ij} x_j = y_i, \quad \forall i \in [1, n]$
 $\sum_{i=1}^n a_{ij} = 1, \quad \forall j \in [1, n]$
 $a_{ij} \ge 0, \quad \forall i, j \in [1, n]$

How to Morph Traffic

- To morph source packet with size s_i:
 - Find jth column of morphing matrix A
 - Sample from column according to distribution
 - Alter packet size to match sampled size s_i

y_1		a_{11}	a_{12}	 a_{1n}	$\begin{bmatrix} x_1 \end{bmatrix}$
y_2	_	a_{21}	a_{22}	 a_{2n}	x_2
y_n		a_{n1}	a_{n2}	 a_{nn}	x_n

Real-world Challenges

- Many issues arise in the real-world:
 - Reducing packet sizes?
 - Large sample spaces?
 - Slight changes in distribution?
 - Not enough packets?

VoIP Morphing Results

- Apply morphing to VoIP language identification work of Wright et al.
 - Nearest-neighbor classifier
 - n-gram distributions of packet sizes
 - Can the classifier distinguish morphed from real?

Strategy	Overhead	Bigram Accuracy
No Padding	0.0%	71%
512-bit Padding	42.2%	50%
Morphing	15.4%	54%

VoIP Morphing Results

- Morpher must be at least as "powerful" as the classifier to reduce accuracy
 - Trigram classifier beats bigram morphing
 - ...but we can make a trigram morpher...

Strategy	Bigram Accuracy	Trigram Accuracy	
No Padding	71%	76%	
512-bit Padding	50%	50%	
Morphing	54%	76%	

Open Questions

- How do we determine security of morphing-like countermeasures?
 - No obvious proof since we are not working in an information theoretic model
- Is there a way to tell if a classifier can ever win?
 - Certain natural limitations and costs may prevent morphing in some scenarios
 - Ex: Cannot buffer packets indefinitely

Summary

- Most users assume contents are secure with well-known cryptographic protocols
- Performance considerations lead to information leakage from traffic features
- Explored security/performance trade-off:
 - Phrase spotting in encrypted VoIP
 - Countermeasures using traffic morphing

Search Hidden Markov Model

Search Hidden Markov Model

Search Hidden Markov Model

REDJACK

Search Hidden Markov Model

