
Activation Analysis of a Byte-based Deep
Neural Network for Malware Classification

Scott Coull, Principal Data Scientist

With Christopher Gardner, Reverse Engineer

©2018 FireEye | Private & Confidential

The Rise of Byte-based Malware Classifiers

◆ Feature engineering for malware classification tasks is

hard. Can deep learning do it for us?

◆ Convolutional neural networks (CNNs) automatically and

efficiently learn feature representations directly from data

◆ Recent work has shown promising results competitive with

(though not better than) traditional machine learning

▶ Accuracy 90-96%

▶ AUC 0.96-0.98

©2018 FireEye | Private & Confidential

Traditional Classifiers vs. Deep Learning

3

Results on 16 million PE files from June 1 to August 31, 2018

◆ Clearly still a large gap between handcrafted

features in MalwareGuard and the CNN

◆ CNN performance is surprising given the level of

indirection and variability of syntax/semantics

found in Windows PE files

◆ How is it doing so well with so little

information?

©2018 FireEye | Private & Confidential

Understanding Byte-based Malware Classifiers

◆ Predictions from deep learning models are notoriously difficult to interpret even under ideal conditions

◆ Malware classification on raw binaries makes it even more difficult due to the semantic gap between

the byte representation and the disassembled code that analysts examine

◆ Objective: Develop methodologies for understanding what byte-based malware classifiers are

learning

4

©2018 FireEye | Private & Confidential

FireEye CNN Malware Classifier

Training

15+ million PE files

20% Malware,

80% Goodware

Epochs: 10

Batch Size: 80

5

Byte Sequence

102,400 bytes

Embedding Layer
(10 Dimensions)

Convolutional + Max Pooling Layerx4

Convolutional Layer

Mean PoolMax Pool

Fully-Connected Layer

Sigmoid

P(Malware)

©2018 FireEye | Private & Confidential

Analysis Overview
◆ Broad Trends

▶ Gather general information about the locations of interest in goodware and malware

▶ Examine locations and strengths using both low-level feature detectors and end-to-end analysis

◆ Deep Analysis

▶ Dive into specific ransomware samples to provide concrete examples of what features are learned

▶ Examine trends in embedding layer topology, byte sequences for frequently-activated filters, and

contiguous segments that push classification toward malware/goodware labels

◆ Deep Learning vs. Reverse Engineer

▶ Understand the overlap between analyst intuition and areas of interest identified by the model

6

Broad Trends
Analyzing activations across a large dataset

7

©2018 FireEye | Private & Confidential

◆ Data

▶ 4,000 PE files (50/50 split)

▶ Random sample from dataset of 15M binaries

◆ Analysis Methodology

▶ Locations and weight of activations in first convolutional layer

▶ Comparison using end-to-end analysis with GradientSHAP1

▶ Differences between goodware and malware

Overview

8

Broad Trends

End-to-End

Low-Level
Features

[1] Lundberg, Scott M., and Su-In Lee. A unified approach to interpreting model predictions.

©2018 FireEye | Private & Confidential

Low-level Feature Detectors

9

Broad Trends Filter 57

©2018 FireEye | Private & Confidential

Low-level Feature Detectors

10

Broad Trends

©2018 FireEye | Private & Confidential

Low-level Feature Detectors

11

Broad Trends

©2018 FireEye | Private & Confidential

Low-level Feature Detectors

12

Broad Trends

©2018 FireEye | Private & Confidential

End-to-End Analysis

13

Broad Trends

Malicious

Benign

Identical offsets for ‘helpful’ features
Data directory VAs and Sizes

Deep Analysis
Studying interesting features in ransomware

14

©2018 FireEye | Private & Confidential

Overview◆ Data

▶ 6 ransomware artifacts (loader, payload, encryptor)

▶ NotPetya, WannaCry, BadRabbit

◆ Methodology

▶ Cluster and visualize of embedding space with

HDBSCAN2 and UMAP3

▶ Examine semantics of recurring activations within

first-layer convolutional filters using BinaryNinja

disassembly

▶ End-to-end analysis of contribution of specific byte

segments to malware/goodware decision

15

Deep Analysis

[2] McInnes, L, Healy, J, UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction.
[3] Campello, Ricardo JGB, Davoud Moulavi, and Jörg Sander. Density-based clustering based on hierarchical density estimates.

End-to-End

Low-Level
Features

Byte
Embeddings

©2018 FireEye | Private & Confidential

Byte Embedding Outliers

16

Deep Analysis
Embedding Layer (UMAP)

Outliers from HDBSCAN

indicate bytes the model has

learned are unique or

“special”

©2018 FireEye | Private & Confidential

Byte Embedding Outliers

17

Deep Analysis
Embedding Layer (UMAP)

◆ eax-edx

◆ nop

◆ Short Jumps

©2018 FireEye | Private & Confidential

Byte Embedding Outliers

18

Deep Analysis
Embedding Layer (UMAP)

ASCII Characters

▶ @, \n

▶ A, W, X

▶ e, I, j, s, t

©2018 FireEye | Private & Confidential

Byte Embedding Outliers

19

Deep Analysis
Embedding Layer (UMAP)

Anti-Debugging

Instruction

©2018 FireEye | Private & Confidential

Low-level Feature Detectors

20

Deep Analysis

71768 (0x10012458L): 72 6d 69 6e 61 74 65 50 rminateP
**71776 (0x10012460L): 72 6f 63 65 73 73 00 00 rocess..
**71784 (0x10012468L): 03 02 47 65 74 4c 6f 63 ..GetLoc
71792 (0x10012470L): 61 6c 54 69 6d 65 00 00 alTime..

71992 (0x10012538L): 74 43 6f 64 65 50 72 6f tCodePro
**72000 (0x10012540L): 63 65 73 73 00 00 15 02 cess....
**72008 (0x10012548L): 47 65 74 4d 6f 64 75 6c GetModul
72016 (0x10012550L): 65 48 61 6e 64 6c 65 41 eHandleA

43024 (0x40a810L): 74 68 72 65 61 64 65 78 threadex
**43032 (0x40a818L): 00 00 c1 02 73 74 72 6estrn
**43040 (0x40a820L): 63 70 79 00 a6 02 72 61 cpy...ra
**43048 (0x40a828L): 6e 64 00 00 a6 00 5f 62 nd...._b
43056 (0x40a830L): 65 67 69 6e 74 68 72 65 eginthre

◆ Filter 83:

▶ Import table activations

▶ Lots of process related function

▶ Some conditional jumps

©2018 FireEye | Private & Confidential

Low-level Feature Detectors

21

Deep Analysis

50644 (0x1000d1d4L): int32_t (* KERNEL32!SetFilePointerEx@IAT)() = 0x12110
**50648 (0x1000d1d8L): int32_t (* KERNEL32!SetEndOfFile@IAT)() = 0x12100
**50652 (0x1000d1dcL): int32_t (* KERNEL32!GetDriveTypeW@IAT)() = 0x120f0
**50656 (0x1000d1e0L): int32_t (* KERNEL32!UnmapViewOfFile@IAT)() = 0x120de
**50660 (0x1000d1e4L): int32_t (* KERNEL32!MapViewOfFile@IAT)() = 0x120ce
50664 (0x1000d1e8L): int32_t (* KERNEL32!FindFirstFileW@IAT)() = 0x120bc

◆ Filter 82:

▶ Import table, and some offset tables·

▶ File IO functions, memory allocation and time functions

©2018 FireEye | Private & Confidential

Low-level Feature Detectors

22

Deep Analysis

10975 (0x100036DFL): cmp [ebp+buf], ecx
**10978 (0x100036E2L): jnz loc_10003B39
**10984 (0x100036E8L): push 4
**10986 (0x100036EAL): xor eax, eax
**10988 (0x100036ECL): mov [edi+1], ax
10992 (0x100036F0L): pop eax

◆ Filter 94 catches parts of EternalRomance

exploit code from WannaCry worm

©2018 FireEye | Private & Confidential

Low-level Feature Detectors

23

Deep Analysis

32953 (0x4080b9L): push edi
**32954 (0x4080baL): push 0xf003f
**32959 (0x4080bfL): push 0x0
**32961 (0x4080c1L):push 0x0
**32963 (0x4080c3L):call dword [ADVAPI32!OpenSCManagerA@IAT]
32969 (0x4080c9L): mov edi, eax

24652 (0x10006c4cL): push 0x0
**24654 (0x10006c4eL): call ebx
**24656 (0x10006c50L): push eax
**24657 (0x10006c51L): call edi
**24659 (0x10006c53L):
**24659 (0x10006c53L): push esi
**24660 (0x10006c54L): push 0x0
**24662 (0x10006c56L): call ebx
**24664 (0x10006c58L): push eax
**24665 (0x10006c59L): call edi
**24667 (0x10006c5bL): pop edi
24668 (0x10006c5cL): pop ebx

◆ Remember the strong malware filter?

◆ Filter 57:

▶ Push/call sequences

▶ Callings functions with (lots of) arguments

(like Windows APIs)

▶ In-lined memcpy() implementation

©2018 FireEye | Private & Confidential

End-to-End Analysis

24

Deep Analysis

Malicious

Benign

Checksum
Set to 0

Resource Directory
VA and Size

WannaCry Worm

©2018 FireEye | Private & Confidential

End-to-End Analysis

25

Deep Analysis

Malicious

Benign

GetProcAddress,
VirtualAlloc

Imports

Security Directory
VA and Size

 (Cert present?)

BadRabbit Payload

Deep Learning vs. Reverse Engineer
The gap between model and human understanding

26

©2018 FireEye | Private & Confidential

Overview
◆ Data

▶ Same 6 ransomware samples from previous analysis

◆ Methodology

▶ RE produces list of file offsets containing interesting

indicators of maliciousness, called areas of interest (AOI)

▶ CNN produces top-100 convolutional layer activations

and malicious SHAP segments

▶ Examine overlap between CNN activations/segments and

analyst AOIs, as well as analyst feedback on CNN

segments

27

Deep Learning vs. Reverse Engineer

CNN Reverse
Engineer

SHAP
Segments

Areas of
Interest

©2018 FireEye | Private & Confidential

Human Feedback on Model Malicious Segments

28

Deep Learning vs. Reverse Engineer

GetProcAddress for
obfuscating imports,

VirtualAlloc to load shellcode

BadRabbit Payload

Import for wsprintfA from
user32.dll, which is

uncommon for benign
software because it is unsafe

Subsystem PE Header Field,
showing binary runs as

console application

VA of .data section
Start of .data section

©2018 FireEye | Private & Confidential

Human Feedback on Model Malicious Segments

29

Deep Learning vs. Reverse Engineer

Checksum Set to 0

.data Section Information
Virtual Size more than x10

larger than Physical Size
Missing standard directories

(no certificate, no exceptions)

Export and Import Table
for Embedded PE File

WannaCry Worm

©2018 FireEye | Private & Confidential

Model Overlap with Human AOIs

30

Deep Learning vs. Reverse Engineer

 BadRabbit Payload WannaCry Worm NotPetya Payload Overall

1st Conv. Layer 23.5% 20.0% 25.0% 30.0%

SHAP Segments 11.7% 0.0% 0.0% 10.8%

Percentage of Analyst AOIs with Overlap

◆ Creating a scheduled task

◆ Strange stack strings

◆ Creating a process as another user

Non-trivial overlap given that we only

examined top-100 activations/segments

©2018 FireEye | Private & Confidential

Summary of Findings

◆ Implicit and explicit import features play a large role in CNN model decisions

▶ Artifacts of imports are observed in embedding, convolutional, and end-to-end analysis results

▶ These can be easily manipulated and previous work has demonstrated adversarial attacks here

◆ Interesting code features are observed at lower layers but do not translate to end-to-end importance

▶ Exploit code from EternalRomance and push-call sequences learned by convolutional filters

▶ Top SHAP segments made up primarily of PE header and import features

31

Part 1

©2018 FireEye | Private & Confidential

Summary of Findings

◆ Many important end-to-end features map closely to common manually-derived features

▶ Incorrect checksums and implicit indicators for presence of certificate

◆ Significant amount of overlap with analyst’s areas of interest

▶ Convolutional filter activations were much more strongly related to analyst AOIs

◆ Highly-ranked end-to-end features considered generally useful indicators by analyst

▶ Most focused on imports or implicit indicators of non-standard PE file structure

32

Part 2

©2018 FireEye | Private & Confidential

FireEye Data Science is Hiring!

◆ Come work on interesting data science problems across the entire cyber security spectrum!

▶ Threat Intelligence, Email, Endpoint, Network, Cloud, …

◆ Data scientist positions open at the Senior, Staff, and Principal level

◆ Software and data engineering positions open at the Staff level

33

Bonus Material

34

©2018 FireEye | Private & Confidential

Byte Embedding Clusters

35

Deep Analysis
Embedding Layer (UMAP)

©2018 FireEye | Private & Confidential

Low-level Feature Detectors

36

Deep Analysis

72584 (0x10012788L): 61 00 b5 00 43 72 79 70 a...Cryp
**72592 (0x10012790L): 74 44 65 72 69 76 65 4b tDeriveK
**72600 (0x10012798L): 65 79 00 00 cd 00 43 72 ey....Cr
72608 (0x100127a0L): 79 70 74 53 65 74 4b 65 yptSetKe

42664 (0x40a6a8L): 72 41 00 00 44 02 53 65 rA..D.Se
**42672 (0x40a6b0L): 74 53 65 72 76 69 63 65 tService
**42680 (0x40a6b8L): 53 74 61 74 75 73 00 00 Status..
**42688 (0x40a6c0L): 34 00 43 68 61 6e 67 65 4.Change
42696 (0x40a6c8L): 53 65 72 76 69 63 65 43 ServiceC

◆ Filter 34:

▶ Crypto-related imports

▶ Process management

▶ ZLIB code snippets

