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The Rise of Byte-based Malware Classifiers

◆ Feature engineering for malware classification tasks is 

hard.  Can deep learning do it for us?

◆ Convolutional neural networks (CNNs) automatically and 

efficiently learn feature representations directly from data

◆ Recent work has shown promising results competitive with 

(though not better than) traditional machine learning

▶ Accuracy 90-96%

▶ AUC 0.96-0.98
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Traditional Classifiers vs. Deep Learning
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Results on 16 million PE files from June 1 to August 31, 2018

◆ Clearly still a large gap between handcrafted 

features in MalwareGuard and the CNN

◆ CNN performance is surprising given the level of  

indirection and variability of syntax/semantics 

found in Windows PE files

◆ How is it doing so well with so little 

information?
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Understanding Byte-based Malware Classifiers

◆ Predictions from deep learning models are notoriously difficult to interpret even under ideal conditions

◆ Malware classification on raw binaries makes it even more difficult due to the semantic gap between 

the byte representation and the disassembled code that analysts examine

◆ Objective: Develop methodologies for understanding what byte-based malware classifiers are 

learning
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FireEye CNN Malware Classifier

Training

15+ million PE files

20% Malware,

80% Goodware

Epochs: 10

Batch Size: 80
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Byte Sequence

102,400 bytes

Embedding Layer
(10 Dimensions)

Convolutional + Max Pooling Layerx4

Convolutional Layer

Mean PoolMax Pool

Fully-Connected Layer

Sigmoid

P(Malware)
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Analysis Overview
◆ Broad Trends

▶ Gather general information about the locations of interest in goodware and malware

▶ Examine locations and strengths using both low-level feature detectors and end-to-end analysis

◆ Deep Analysis

▶ Dive into specific ransomware samples to provide concrete examples of what features are learned

▶ Examine trends in embedding layer topology, byte sequences for frequently-activated filters, and 

contiguous segments that push classification toward malware/goodware labels

◆ Deep Learning vs. Reverse Engineer

▶ Understand the overlap between analyst intuition and areas of interest identified by the model
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Broad Trends
Analyzing activations across a large dataset
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◆ Data

▶ 4,000 PE files (50/50 split)

▶ Random sample from dataset of 15M binaries

◆ Analysis Methodology

▶ Locations and weight of activations in first convolutional layer

▶ Comparison using end-to-end analysis with GradientSHAP1

▶ Differences between goodware and malware

Overview
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Broad Trends

End-to-End

Low-Level 
Features

[1] Lundberg, Scott M., and Su-In Lee. A unified approach to interpreting model predictions.
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Low-level Feature Detectors

9

Broad Trends Filter 57
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Low-level Feature Detectors

10

Broad Trends
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Low-level Feature Detectors
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Broad Trends



©2018 FireEye  |  Private & Confidential 

Low-level Feature Detectors

12

Broad Trends
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End-to-End Analysis
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Broad Trends

Malicious

Benign

Identical offsets for ‘helpful’ features
Data directory VAs and Sizes



Deep Analysis
Studying interesting features in ransomware 
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Overview◆ Data

▶ 6 ransomware artifacts (loader, payload, encryptor)

▶ NotPetya, WannaCry, BadRabbit

◆ Methodology

▶ Cluster and visualize of embedding space with 

HDBSCAN2 and UMAP3

▶ Examine semantics of recurring activations within 

first-layer convolutional filters using BinaryNinja 

disassembly

▶ End-to-end analysis of contribution of specific byte 

segments to malware/goodware decision

15

Deep Analysis

[2] McInnes, L, Healy, J, UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction.
[3] Campello, Ricardo JGB, Davoud Moulavi, and Jörg Sander. Density-based clustering based on hierarchical density estimates. 

End-to-End

Low-Level 
Features

Byte 
Embeddings
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Byte Embedding Outliers
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Deep Analysis
Embedding Layer (UMAP)

Outliers from HDBSCAN 

indicate bytes the model has 

learned are unique or 

“special”
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Byte Embedding Outliers
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Deep Analysis
Embedding Layer (UMAP)

◆ eax-edx

◆ nop

◆ Short Jumps
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Byte Embedding Outliers
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Deep Analysis
Embedding Layer (UMAP)

ASCII Characters

▶ @, \n

▶ A, W, X

▶ e, I, j, s, t
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Byte Embedding Outliers
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Deep Analysis
Embedding Layer (UMAP)

Anti-Debugging 

Instruction



©2018 FireEye  |  Private & Confidential 

Low-level Feature Detectors
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Deep Analysis

71768 (0x10012458L): 72 6d 69 6e 61 74 65 50 rminateP
**71776 (0x10012460L): 72 6f 63 65 73 73 00 00 rocess..
**71784 (0x10012468L): 03 02 47 65 74 4c 6f 63 ..GetLoc
71792 (0x10012470L): 61 6c 54 69 6d 65 00 00 alTime..

71992 (0x10012538L): 74 43 6f 64 65 50 72 6f tCodePro
**72000 (0x10012540L): 63 65 73 73 00 00 15 02 cess....
**72008 (0x10012548L): 47 65 74 4d 6f 64 75 6c GetModul
72016 (0x10012550L): 65 48 61 6e 64 6c 65 41 eHandleA

43024 (0x40a810L): 74 68 72 65 61 64 65 78 threadex
**43032 (0x40a818L): 00 00 c1 02 73 74 72 6e ....strn
**43040 (0x40a820L): 63 70 79 00 a6 02 72 61 cpy...ra
**43048 (0x40a828L): 6e 64 00 00 a6 00 5f 62 nd...._b
43056 (0x40a830L): 65 67 69 6e 74 68 72 65 eginthre

◆ Filter 83:

▶ Import table activations

▶ Lots of process related function

▶ Some conditional jumps
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Low-level Feature Detectors

21

Deep Analysis

50644 (0x1000d1d4L): int32_t (* KERNEL32!SetFilePointerEx@IAT)() = 0x12110
**50648 (0x1000d1d8L): int32_t (* KERNEL32!SetEndOfFile@IAT)() = 0x12100
**50652 (0x1000d1dcL): int32_t (* KERNEL32!GetDriveTypeW@IAT)() = 0x120f0
**50656 (0x1000d1e0L): int32_t (* KERNEL32!UnmapViewOfFile@IAT)() = 0x120de
**50660 (0x1000d1e4L): int32_t (* KERNEL32!MapViewOfFile@IAT)() = 0x120ce
50664 (0x1000d1e8L): int32_t (* KERNEL32!FindFirstFileW@IAT)() = 0x120bc

◆ Filter 82:

▶ Import table, and some offset tables·

▶ File IO functions, memory allocation and time functions
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Low-level Feature Detectors

22

Deep Analysis

10975 (0x100036DFL): cmp     [ebp+buf], ecx
**10978 (0x100036E2L): jnz     loc_10003B39
**10984 (0x100036E8L): push    4
**10986 (0x100036EAL): xor     eax, eax
**10988 (0x100036ECL): mov     [edi+1], ax
10992 (0x100036F0L): pop     eax

◆ Filter 94 catches parts of EternalRomance 

exploit code from WannaCry worm
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Low-level Feature Detectors

23

Deep Analysis

32953 (0x4080b9L): push    edi
**32954 (0x4080baL): push    0xf003f
**32959 (0x4080bfL): push    0x0
**32961 (0x4080c1L):push    0x0
**32963 (0x4080c3L):call    dword [ADVAPI32!OpenSCManagerA@IAT]
32969 (0x4080c9L): mov     edi, eax

24652 (0x10006c4cL): push    0x0
**24654 (0x10006c4eL): call    ebx
**24656 (0x10006c50L): push    eax
**24657 (0x10006c51L): call    edi
**24659 (0x10006c53L): 
**24659 (0x10006c53L): push    esi
**24660 (0x10006c54L): push    0x0
**24662 (0x10006c56L): call    ebx
**24664 (0x10006c58L): push    eax
**24665 (0x10006c59L): call    edi
**24667 (0x10006c5bL): pop     edi
24668 (0x10006c5cL): pop     ebx

◆ Remember the strong malware filter?

◆ Filter 57:

▶ Push/call sequences

▶ Callings functions with (lots of) arguments 

(like Windows APIs)

▶ In-lined memcpy() implementation
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End-to-End Analysis
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Deep Analysis 

Malicious

Benign

Checksum 
Set to 0

Resource Directory 
VA and Size

WannaCry Worm
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End-to-End Analysis
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Deep Analysis 

Malicious

Benign

GetProcAddress, 
VirtualAlloc 

Imports

Security Directory 
VA and Size

 (Cert present?)

BadRabbit Payload



Deep Learning vs. Reverse Engineer
The gap between model and human understanding

26
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Overview
◆ Data

▶ Same 6 ransomware samples from previous analysis

◆ Methodology

▶ RE produces list of file offsets containing interesting 

indicators of maliciousness, called areas of interest (AOI)

▶ CNN produces top-100 convolutional layer activations 

and malicious SHAP segments

▶ Examine overlap between CNN activations/segments and 

analyst AOIs, as well as analyst feedback on CNN 

segments

27

Deep Learning vs. Reverse Engineer

CNN Reverse 
Engineer

SHAP 
Segments

Areas of 
Interest
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Human Feedback on Model Malicious Segments
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Deep Learning vs. Reverse Engineer

GetProcAddress for 
obfuscating imports, 

VirtualAlloc to load shellcode

BadRabbit Payload

Import for wsprintfA from 
user32.dll, which is 

uncommon for benign 
software because it is unsafe

Subsystem PE Header Field, 
showing binary runs as 

console application

VA of .data section
Start of .data section
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Human Feedback on Model Malicious Segments

29

Deep Learning vs. Reverse Engineer

Checksum Set to 0

.data Section Information
Virtual Size more than x10 

larger than Physical Size
Missing standard directories

(no certificate, no exceptions)

Export and Import Table 
for Embedded PE File

WannaCry Worm
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Model Overlap with Human AOIs
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Deep Learning vs. Reverse Engineer

 BadRabbit Payload WannaCry Worm NotPetya Payload Overall

1st Conv. Layer 23.5% 20.0% 25.0% 30.0%

SHAP Segments 11.7% 0.0% 0.0% 10.8%

Percentage of Analyst AOIs with Overlap

◆ Creating a scheduled task

◆ Strange stack strings

◆ Creating a process as another user

Non-trivial overlap given that we only 

examined top-100 activations/segments
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Summary of Findings

◆ Implicit and explicit import features play a large role in CNN model decisions

▶ Artifacts of imports are observed in embedding, convolutional, and end-to-end analysis results

▶ These can be easily manipulated and previous work has demonstrated adversarial attacks here

◆ Interesting code features are observed at lower layers but do not translate to end-to-end importance

▶ Exploit code from EternalRomance and push-call sequences learned by convolutional filters

▶ Top SHAP segments made up primarily of PE header and import features

31

Part 1
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Summary of Findings

◆ Many important end-to-end features map closely to common manually-derived features

▶ Incorrect checksums and implicit indicators for presence of certificate

◆ Significant amount of overlap with analyst’s areas of interest

▶ Convolutional filter activations were much more strongly related to analyst AOIs

◆ Highly-ranked end-to-end features considered generally useful indicators by analyst

▶ Most focused on imports or implicit indicators of non-standard PE file structure
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Part 2
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FireEye Data Science is Hiring!

◆ Come work on interesting data science problems across the entire cyber security spectrum!

▶ Threat Intelligence, Email, Endpoint, Network, Cloud, …

◆ Data scientist positions open at the Senior, Staff, and Principal level

◆ Software and data engineering positions open at the Staff level

33



Bonus Material
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Byte Embedding Clusters
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Deep Analysis
Embedding Layer (UMAP)



©2018 FireEye  |  Private & Confidential 

Low-level Feature Detectors

36

Deep Analysis

72584 (0x10012788L): 61 00 b5 00 43 72 79 70  a...Cryp
**72592 (0x10012790L): 74 44 65 72 69 76 65 4b  tDeriveK
**72600 (0x10012798L): 65 79 00 00 cd 00 43 72  ey....Cr
72608 (0x100127a0L): 79 70 74 53 65 74 4b 65  yptSetKe

42664 (0x40a6a8L): 72 41 00 00 44 02 53 65  rA..D.Se
**42672 (0x40a6b0L): 74 53 65 72 76 69 63 65  tService
**42680 (0x40a6b8L):  53 74 61 74 75 73 00 00  Status..
**42688 (0x40a6c0L): 34 00 43 68 61 6e 67 65  4.Change
42696 (0x40a6c8L): 53 65 72 76 69 63 65 43  ServiceC

◆ Filter 34:

▶ Crypto-related imports

▶ Process management

▶ ZLIB code snippets


