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Abstract

The masquerade attack, where an attacker takes on the identity of a legitimate user to maliciously utilize that user’s privileges,
poses a serious threat to the security of information systems. Such attacks completely undermine traditional security mechanisms
due to the trust imparted to user accounts once they have been authenticated. Many attempts have been made at detecting these
attacks, yet achieving high levels of accuracy remains an open challenge. In this paper, we discuss the use of a specially tuned
sequence alignment algorithm, typically used in bioinformatics, to detect instances of masquerading in sequences of computer
audit data. By using the alignment algorithm to align sequences of monitored audit data with sequences known to have been
produced by the user, the alignment algorithm can discover areas of similarity and derive a metric that indicates the presence or
absence of masquerade attacks. Additionally, we present several scoring systems, methods for accommodating variations in user
behavior, and heuristics for decreasing the computational requirements of the algorithm. Our technique is evaluated against the
standard masquerade detection dataset provided by Schonlau et al. [Schonlau, M., DuMouchel, W., Ju, W.H., Karr, A.F., Theus,
M., Vardi, Y., 2001. Computer intrusion: Detecting masquerades. Statistical Science 16 (1), 58–74], and the results show that the
use of the sequence alignment technique provides, to our knowledge, the best results of all masquerade detection techniques to
date.
c© 2008 Elsevier B.V. All rights reserved.

1. Introduction

To protect information systems from unauthorized use, administrators rely on security technologies such as
firewalls, network-based intrusion detection systems, and strong authentication protocols. If an attacker can gain
access to a legitimate user account, however, these state-of-the-art security technologies are rendered useless. For
instance, an attacker who has obtained a user’s password can utilize all of the user’s privileges without being
detected due to the trust placed in the compromised account. Similarly, malicious insiders can choose to use their
privileges to perform unauthorized actions. These examples describe the canonical masquerade attack, where an
attacker masquerades as a legitimate user of the system to perform unauthorized and malicious actions without being
subjected to the scrutiny of traditional security technologies. Clearly, such attacks pose a serious threat and their
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detection often occurs long after the damage is done. The key, therefore, is to develop techniques to differentiate
this malicious masquerading behavior from legitimate usage of the information system. This detection is difficult
in practice, as legitimate daily activity could appear malicious based on its context. In fact, there have been several
attempts at creating algorithms for detecting these attacks, though achieving high levels of detection accuracy remains
an open problem (Coull et al., 2003; Lane and Brodley, 1997, 1998, 1999; Maxion and Townsend, 2002; Maxion,
2003; Schonlau and Theus, 2000; Schonlau et al., 2001; Szymanski and Zhang, 2004; Wang and Stolfo, 2003).

In this paper, we leverage the pattern matching abilities of sequence alignment algorithms to discover masquerade
attacks within sequences of information system audit data (e.g., command line entries). In bioinformatics, these
algorithms are typically used to discover areas of similarity between two sequences of biological data (e.g., DNA
sequences). Sequence alignment provides several benefits beyond simple lexical matching by incorporating domain
knowledge into the alignment process, such as likely mutations in the sequences. Customized scoring systems are
used to define ‘good’ and ‘bad’ alignments based on this domain knowledge. Hence, the alignments actually highlight
areas of functional similarity between the aligned sequences based on the scoring system utilized.

These sequence alignment algorithms can also be used to differentiate legitimate usage from masquerade attacks.
To do so, we create a signature of the normal behavior for a given user by collecting sequences of audit data created
from legitimate use of the information system, known as the user signature. This user signature can then be aligned
with audit data collected from monitored sessions to find areas of similarity between the two. Areas that do not align
properly can be assumed to be anomalous, and the presence of many of these anomalous areas is a strong indicator
for masquerade attacks. The ability to encode domain knowledge within the scoring system used by these algorithms
allows us to align sequences with similar high-level functionality, or behavior, despite the fact that the underlying
audit data may differ lexically. This kind of specialization allows the sequence alignment technique to provide more
complex pattern matching than previous masquerade detection techniques.

Though the use of sequence alignment appears to be adaptable to the task of detecting masquerade attacks, most of
the research performed on the use of sequence alignment and its scoring systems focuses on biological applications.
Unfortunately, much of this research does not have clear parallels to masquerade detection. For instance, biological
sequences are typically made up of some finite alphabet of base symbols (e.g., nucleotides or proteins), while audit
data has an effectively infinite alphabet of base symbols (e.g., the set of all possible command line entries). Moreover,
significant research has been performed on the mutations of DNA and RNA, and likely mutations can be codified
as probabilities gleaned from the substantial set of samples available, whereas such a model is difficult to derive for
computer audit data because of its dynamic nature. Accordingly, we provide a modification of the Smith–Waterman
local alignment algorithm (Smith and Waterman, 1981) to properly accommodate for the alignment of computer audit
data. We also investigate two novel scoring systems designed to model mutations in this audit data.

In addition, several challenges are inherent to the task of detecting masquerade attacks. First, the usage patterns of
legitimate users can be expected to change over time, perhaps due to new projects or software. The use of static user
signatures is therefore prone to label legitimate variations in behavior as attacks. By using the sequence alignment
algorithm’s ability to discover areas of similarity, however, we are able to dynamically update the user’s signature
as new user behavior is encountered. Second, the Smith–Waterman algorithm is computationally expensive, making
it impractical for use in detecting masquerade attacks on multi-user systems. By selectively performing alignments
only on the portions of the user signature that have the highest probability of alignment, we significantly reduce the
computations required with almost no loss of accuracy. Our modified alignment algorithm, along with our scoring
systems and signature updating scheme, were tested on the Schonlau et al. dataset (Schonlau and Theus, 2000),
which has become the de facto standard due to its use in nearly all previous masquerade detection work. Results of
the evaluation show that our system provides, to the best of our knowledge, the best accuracy of any of the known
masquerade detection techniques.

The paper begins with a discussion of previous attempts at detecting masquerade attacks, as well as other uses of
bioinformatics algorithms within the field of computer security. We then describe the methodology used to evaluate our
masquerade detection technique. We continue by describing our modifications of the Smith–Waterman local alignment
algorithm (Smith and Waterman, 1981), the scoring systems developed for use in aligning computer audit data, our
user signature updating mechanism, and finally the use of heuristics to reduce the computational requirements of the
alignment in detecting masqueraders. For each improvement, we present its evaluation in-line for ease of reading. We
progressively adapt our sequence alignment algorithm from the most simplistic version, given in previous exploratory
work (Coull et al., 2003), to the most sophisticated one, taking advantage of the custom scoring systems, signature
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updating, and reduction of computational requirements. We conclude by assessing the impact of this algorithm on the
state of the art in masquerade detection.

2. Related work

Schonlau and Theus (2000) and Schonlau et al. (2001) provided the first techniques for detecting masquerade
attacks through the use of a number of statistical methods. One of the proposed methods, for instance, used the
uniqueness of a command in a sequence of command line entries as an anomaly metric. If a particular command
was rarely used previously, its score would be proportionally lower than a command that was used more often.
The underlying idea in the methods proposed by Schonlau et al. was that legitimate sequences of command line
data should be consistent with the commands found in the user’s signature, and any deviation would indicate
possible masquerade attacks. Of course, these approaches have several shortcomings, including ignoring sequencing
information by assuming command independence, ignoring command functionality, and ignoring variations in human
behavior by unduly punishing any change from past command line entries. Lane and Brodley (1997, 1998, 1999) take
a string matching approach by attempting to lexically match subsequences of the user’s signature with subsequences
of the monitored session, and used the number of commands that were matched to create a similarity metric. The
method proposed by Lane and Brodley, like Schonlau et al., ignores the underlying functionality of the commands in
the sequences, relying instead on finding exact lexical matches.

There have also been several attempts at applying more advanced machine learning techniques to the problem of
masquerade detection. Maxion and Townsend (2002) provide the best results of all past techniques by using a two-
class, Naı̈ve Bayes classifier to detect masqueraders. The most important contribution made by Maxion and Townsend
is the use of updating mechanisms that dynamically update the classifier probabilities as monitored sequences are
classified. Thus, this approach adapts to changes in user behavior. However, despite the improved performance of the
classifier, sequencing information and the functional semantics of the commands are ignored. Wang and Stolfo (2003)
apply one-class Naı̈ve Bayes and Support Vector Machine classifiers, and find that their results are comparable to those
of the two-class classifiers. This approach, however, suffers from the same weaknesses as the Maxion and Townsend
approach by ignoring sequence and functionality information. Szymanski and Zhang (2004) also use a one-class
Support Vector Machine, but implement a novel recursive data mining strategy to perform dimensionality reduction.
Unlike the Support Vector Machine of Wang and Stolfo, Szymanski and Zhang do provide some consideration for
sequencing information in their dimensionality reduction technique, but functionality is ignored as is the possibility
of variation in user behavior.

Several other bioinformatics tools have been applied to computer security problems. Wespi et al. (1999) were
among the first to consider the use of bioinformatics techniques beyond biological data when they applied the
TEIRESIAS pattern discovery algorithm to sequences of system call data. This algorithm finds recurring patterns
of maximal length sequences and uses these recurring patterns to build a database of valid system call sequences.
More recently, Tandon et al. (2004) used the concept of motifs, or conserved areas of recurring behaviors, to discover
anomalies within sequences of audit data. Wright et al. (2004, 2006) use Hidden Markov Models, which are typically
used to align many biological sequences at once, to detect the presence of various application protocols within
encrypted tunnels.

Previous work on using sequence alignment techniques to detect masquerade attacks focused on an exploration
of the technique and the design choices in tuning the algorithm for use in masquerade detection (Coull et al., 2003).
This prior work, however, ignored the use of domain knowledge in the development of scoring systems, and made
no attempt to address issues involved in dynamically updating user signatures to variations in behavior. In this paper,
we focus on formalizing the insights gleaned from exploration of the sequence alignment techniques, and provide an
evaluation of methods for updating the user’s signature and using domain knowledge in scoring alignments. Through
this deeper exploration, we are able to provide a system which performs substantially better than those previously
proposed.

3. Evaluation

To evaluate our sequence alignment method, we compare our results to those obtained by previously published
methods using the Schonlau et al. dataset (Schonlau et al., 2001). This dataset has become the de facto standard due
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to its wide use and public availability. In fact, all previous masquerade detection techniques were evaluated, at least in
part, on the Schonlau dataset, thereby making comparison among masquerade detection algorithms straightforward.1

The Schonlau dataset was created by recording, via the acct utility, users’ commands as they were entered into
the UNIX shell. All command arguments were removed for the sake of user privacy. Commands were recorded for
seventy distinct users, fifty of which were chosen as the users that would make up the dataset. For each of these fifty
users in the dataset, 5000 commands were recorded to make up the set of commands that are considered free of any
anomaly or intrusion. We will call such anomaly-free command sequences the user’s signature, or training set. An
additional 10,000 commands were recorded from each user in the dataset to make up the set of commands that are
to be tested for intrusions. We call this set the test data. The commands that have been recorded from the remaining
twenty users are randomly interspersed into the fifty users’ test data, thereby replacing the commands of the fifty
users with those of the twenty users not represented in the dataset. This replacement is probabilistic in nature, and is
discussed in detail by Schonlau et al. (2001).

The commands, in both the user’s signature and the test data, are broken into 100-command groupings, which we
will call blocks. Hence, the dataset consists of data for fifty users, where each user has a signature made of fifty blocks,
and test data made of one hundred blocks. Additionally, any of the one hundred blocks in the test data may or may
not have another user’s command(s) embedded within it. Our task, therefore, is to align the 100-command test blocks
to the 5000-command user signature sequence, and determine if the resultant alignment is indicative of a masquerade
attack. The only information about the intrusions that are given by the dataset is a marking of which test data blocks
have at least one command that was inserted from a different user’s recorded sequence. No statements are made as to
which commands, or even how many commands, constitute the masquerade attack within each test block.

Unfortunately, the Schonlau dataset has several weaknesses which limit its realism. The lack of detailed information
about which commands were intrusions in the test blocks makes a thorough analysis of masquerade detection
techniques difficult, at best. Also, the manner in which masquerade attacks are interspersed among the true command
data is far from realistic. In some cases, only a single command may be inserted, which could be as innocuous as a
command to change the working directory. Certainly, such an ‘attack’ is far less dangerous and realistic than one that
performs a longer sequence of truly malicious actions.

The primary weakness of this dataset, though, is its lack of command arguments. It is not only unrealistic, but
could also lead to some questions about the applicability of the so-called mimicry attacks (Wagner and Soto, 2002),
where an attacker attempts to accurately mimic the valid behavior of the program or user being monitored to escape
detection. However, evaluation of the Maxion and Townsend Naı̈ve Bayes classifier (Maxion, 2003) on a proprietary
dataset has shown that performance improves significantly when command arguments are present. This indicates that
the Schonlau dataset is of value as a lower bound on the performance of masquerade detection techniques, and that
augmenting command lines with argument data may be an effective countermeasure for mimicry attacks, though
discussion of specific mimicry countermeasures is beyond the scope of this paper.

In evaluating their technique, Maxion and Townsend (2002) created a scoring framework, which we call the
Maxion–Townsend score, that rates the overall performance of a masquerade detection algorithm as a function
of its false positive rate and its false negative, or miss, rate. The Maxion–Townsend scoring equation is equal to:
6 ∗ FalsePositives +Misses. The choice of a false positive coefficient of six and a false negative coefficient of one is
somewhat arbitrary, but provides a realistic assessment of the overall cost of the detection techniques in low security
environments, where false positives are far more costly than false negatives due to their disruptive nature. We use the
Maxion–Townsend score, as well as the more traditional receiver operator characteristic (ROC) curve, to compare the
overall performance of previously published techniques to our sequence alignment algorithm.

4. Sequence alignment algorithm

Sequence alignment is used in bioinformatics to find areas of similarity between two biological sequences, such as
DNA or protein sequences. It can be viewed as a generalization of the longest common subsequence problem (Wagner
and Fischer, 1974) in which we are given two strings, A = a1a2 . . . am and B = b1b2 . . . bn (n ≤ m) over alphabet
Σ . The goal is to find the maximal length lexically similar subsequences of A and B (i.e., exact string matches). This

1 Unfortunately, Wang and Stolfo (2003) do not provide specific false positive and true detection scores, thereby making direct comparison to
their technique impossible.
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Fig. 1. Example sequence alignment of DNA sequences.

could be achieved by deleting characters from A and B until two maximal length and lexically similar subsequences
of A and B remain. Alternatively, instead of deleting symbols, gaps may be inserted into the sequences so that the
matching common subsequences are aligned. For instance, gaps are inserted in both the upper and lower sequences in
Fig. 1 to align the matching subsequences.

Beyond simple lexical matching, sequence alignment uses a scoring system to promote certain matches and to
discourage others. In bioinformatics, such scoring is based on observed mutations from one symbol to another (e.g.,
from one nucleotide in a DNA sequence to another). Thus, the discovery of the maximal subsequence between two
biological sequences is not simply based on lexical matching, but on the biological plausibility of two sequences
having similar functionality, or having been descended from a similar predecessor sequence. Fig. 1 depicts an example
where mismatched symbols (T and A) are aligned despite lexical dissimilarity because the possibility of mutation from
one to the other is encoded in the scoring system used.

In general, there are several modes of alignment, including global, semi-global, and local alignments. Global
alignment, known as the Needleman–Wunch algorithm (Needleman and Wunsch, 1970), tries to maximize the length
of the subsequence over the entire length of both strings. It is useful when both strings are of approximately the
same length and the entirety of both sequences should be similar. Local alignment, known as the Smith–Waterman
algorithm (Smith and Waterman, 1981), focuses instead on finding the best aligned substrings of the two sequences
over all possible substrings, rather than over the entire sequence. Local alignment is useful when searching for areas
of functional similarity between sequences, or when one sequence is significantly longer than the other. In such cases
the majority of the sequence can be assumed to be dissimilar except for the area of functional similarity, and so global
alignment would provide a poor alignment. Finally, semi-global alignment allows for large areas of the sequences to
be aligned as in global alignments, but also allows dissimilar prefixes and suffixes of the sequences to be ignored.
Semi-global alignment is particularly useful in situations where the alignment of the entire length of the sequences
should be dictated primarily by the alignment of several small, conserved subsequences. Recent work on pair-wise
sequence alignment has focused on improving computational requirements while maintaining the optimality of the
underlying alignments (Altschul et al., 1990, 1997; Pearson and Lipman, 1988; Zhang et al., 2000; Bray et al., 2003).

4.1. Detecting masquerade attacks

We can draw several parallels between searching for similarity within sequences of biological data and searching
for signs of masquerade attacks within computer audit data, like the Schonlau command line data. In the masquerade
detection problem, we are given two strings Signature = a1a2 . . . am and Test = b1b2 . . . bn with n ≤ m. The string
Signature represents the sequence of audit data gathered from normal usage of the system by a given user. The string
Test represents the sequence of audit data gathered from the currently monitored session in which we wish to detect
masquerade attacks. These sequences are made from an alphabet, Σ , which is defined by the type of audit data being
recorded. In the case of the Schonlau data, this alphabet consists of commands that can be entered at the command
line, not including their arguments. Note that this alphabet is effectively infinite for our purposes, and this represents
a significant difference from the use of sequence alignment with biological data. Our goal is to find the areas of
dissimilarity between Signature and Test, and determine if the extent of this dissimilarity indicates a masquerade
attack. This is in fact equivalent to aligning the two strings to find the areas of similarity, and assuming that alignment
with gaps or lexical mismatches may be indicative of possible masquerade attacks.

The alignment algorithm, shown in Algorithm 1, uses dynamic programming to discover the optimal alignment
among all possible alignments. It begins by initializing an m + 1 by n + 1 matrix, called D. Starting at position (0, 0)
(i.e., the upper left corner) in the matrix, we iterate through each position whose value is determined through a choice
of three transitions to that position:
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Algorithm 1 Align(Signature of length m, Test of length n)

for i = 0 to m do
for j = 0 to n do

if i = 0 or j = 0 then
D[i][ j] ← 0

else
if i = m or j = n then

top← D[i][ j − 1]
left← D[i − 1][ j]

else
top← D[i][ j − 1] + gapSignature
if top < 0 then

top← 0
end if
left← D[i − 1][ j] + gapTest
if left < 0 then

left← 0
end if

end if
if Signature[i − 1] = Test[ j − 1] then

diagonal← D[i − 1][ j − 1] + match
else

diagonal← D[i − 1][ j − 1] + mismatch
end if
D[i][ j] ← max(top, left, diagonal)

end if
end for

end for
return D[m][n]

1. Diagonal step: Indicates an alignment between the i − 1 symbol in Signature with the j − 1 symbol in Test. The
alignment score added to the value of the matrix position at (i − 1, j − 1) measures the level of alignment of the
symbols defined in the scoring system, denoted as diagonal.

2. Vertical step: Indicates the insertion of a gap into Signature, and alignment of the gap with the j − 1 symbol in
Test. The gap penalty is added to the value of the matrix position at (i, j − 1), denoted as top. The gap penalty for
this transition is dependent on the scoring system used.

3. Horizontal step: Indicates the insertion of a gap into Test, and alignment of the gap with the i − 1 symbol in
Signature. The gap penalty is added to the value of the matrix position at (i − 1, j), denoted as left. As with the
vertical step, the gap penalty for this transition is dependent on the scoring system used.

The maximum value of these three possible transitions is used as the value for the current matrix position and indicates
the actual alignment made. Thus, given the dynamic programming principle, each position, (i, j), in the matrix
represents the score of the optimal alignment of all symbols up to location i − 1 in Signature and j − 1 in Test.
By induction, the score given in position (m, n) represents the score of the optimal alignment of the two sequences
given the scoring system, and by tracing the transitions made in deriving that score we can recreate the alignment of
the two sequences. The resultant score at the (m, n) position of the matrix represents a metric for the similarity of the
two strings according to the scoring system used. We use this score as an indicator for masquerade attacks.

Note that in our masquerade detection problem, the Signature sequence must necessarily be larger than the Test
sequence because it must record the user’s behavior over long periods of time to create a useful profile of behavior.
Thus, it is prudent to choose a type of alignment that allows the entire Test sequence to be aligned, but whose alignment
is dictated by conserved areas of similarity within the sequences — semi-global alignment is an excellent choice
for such behavior. In our semi-global implementation, there are some cases where the transitions given above are
altered. To allow for a prefix of the sequences to be ignored, the 0th column and the 0th row have a gap penalty
of zero for gaps in either sequence. Therefore, the prefixes can be ignored simply by inserting gaps into either
sequence, with no penalty to the resultant scoring when alignment between symbols begins in earnest. Similarly,
the gap penalties for the mth column and the nth row are set to zero for both sequences. Thus, after the end of one
of the sequences is reached, we align the remainder of the opposite sequence with gaps with no loss of score. Also,
while performing the alignment, if at any point the score of the alignment becomes negative due to gap penalties
within the central positions of the matrix, the score at that position is reset to zero. This allows us to delineate the
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Fig. 2. Example alignment using semi-global Smith–Waterman alignment.

areas of similarity within the sequences, and use only the largest contiguous area of similarity in the final score
calculation.

The alignment scoring system itself is made up of four variables that define the behavior of the alignment. The
match variable determines the value added to the score at a given matrix position when a diagonal step is made and
the two symbols being aligned are an exact lexical match. The mismatch variable determines the value added to or
subtracted from the score based on the plausibility of mutation from the symbol in Signature to the symbol found in
Test. This variable can represent very complex models of mutation, and has a significant amount of power in defining
the alignment. Finally, the gapSignature and gapTest variables determine the values subtracted from the score due to
the introduction of a gap within the Signature or Test sequence, respectively.

Intuitively, the choice of functions for defining these variables should represent the preference of the respective
alignments (e.g., match, mismatch, or gap) within the optimal alignment of the sequences. In our case, it is clear that
an exact lexical match of all symbols is the optimal situation — one in which the user repeats his behavior exactly as it
is captured in his signature. A lexical mismatch between symbols could indicate either a positive or negative alignment
based on the specific symbols being aligned. In the following section, we examine the ways in which we can define
‘good’ and ‘bad’ mismatches through custom scoring systems. The use of gaps is certainly the worst possible case of
alignment, as it means that the symbols in the sequences are significantly different according to the scoring scheme
used. An example alignment with a match score of +2, a mismatch score of 0, and a gap penalty of −2 is given in
Fig. 2.

4.2. Masquerade detection threshold

The alignment scores can range from zero, indicating that the entire sequence was ignored as a prefix or suffix,
to the length of the test data sequence multiplied by the match score, indicating an exact match. However, in the
context of masquerade detection, these scores depend on the consistency of the user’s behavior. For instance, if the
user were to use only a single command, then one would expect the alignment of his monitored sequences to his
signature to produce the maximum score at all times. Of course, user behavior is distinctive, and therefore setting the
same threshold for all users is inappropriate. Moreover, the consistency of the user’s behavior may actually change
over time due to project requirements, or other individual considerations.

Given these constraints, we choose to create a dynamic threshold for each user. This threshold is calculated by
taking 20 random, 1000-command subsequences of the user’s Signature sequence, and aligning them to 20 non-
overlapping, 100-command subsequences of the same user’s Signature sequence. The average of the resultant scores
of these alignments represents the typical consistency of the user’s behavior as depicted in his signature. As alignments
to the monitored audit data are made, this average is updated with the latest scores, thus allowing for slight changes to
the user’s consistency over time. To determine the threshold for detecting masquerade attacks, we take a percentage
of this average. Thus, the percentage represents the sensitivity of the detection mechanism. For example, if we set
the sensitivity to 50%, then any alignment that scores lower than half the user’s average is classified as containing
a masquerade attack. This sensitivity allows administrators to tune the security provided by the system. A high
sensitivity value would catch a lot masquerade attacks, but may expose the system to a large number of false positives
created by normal user activity. Conversely, a low sensitivity would catch only the most onerous masquerade attacks
and would rarely raise false alarms, but more subtle attacks might go undetected.
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Fig. 3. Receiver operator characteristic curve for the previous result.

4.3. Sequence alignment results

To provide context for the evaluation of our custom scoring system, signature updating strategy, and heuristic speed
up method, we provide the results from our previous, cursory study of the sequence alignment technique’s ability to
detect anomalies in sequences of audit data. In our exploratory study, we implemented the Smith–Waterman semi-
global alignment algorithm with a simplistic scoring system (Coull et al., 2003). The scoring system for this initial
study was set to provide a score of +1 to exact matches, −2 for gaps created in the Test sequence, and −3 for gaps
created in the Signature sequence. The mismatch score was derived by calculating the frequency of occurrence of the
mismatched commands in the Signature sequence. If the frequency of the commands within the Signature sequence
is greater than the average frequency of occurrence of commands in the Signature, the mismatch is given a positive
score in the range (0, 1]. If the frequency is less than the average, the mismatch is given a negative score in the range
[−1, 0). Of course, if the frequency is exactly the average, then the mismatch score is 0. This scheme represents a very
simplistic model where all matches are weighted more heavily than mismatches, which are weighted more heavily
than gaps in the Test sequence, and so on.

Receiver operator characteristic (ROC) curves are used to depict the overall performance of our technique
throughout this paper. These ROC curves are plotted with hit rate (i.e., true positive rate) as a function of the miss rate
(i.e., false negative rate). The respective aggregate rates are derived by averaging over the individual rates of each user
in the dataset, and the ROC curve is plotted by varying the sensitivity of the masquerade threshold from 0% to 100%
of the user’s average at 5% increments. Additionally, we provide the Maxion–Townsend Score for each masquerade
detection algorithm as a means of comparison. We choose the Maxion–Townsend score for our techniques as the
minimum score across all sensitivity levels of the masquerade threshold, and scores from previous techniques are
quoted from the cited references.

Despite the simplicity of the scoring system, the approach yielded encouraging results, as depicted in the ROC
curve of Fig. 3. According to the ROC curve, the sequence alignment technique is only bested by the Naı̈ve Bayes
approaches of Maxion and Townsend (2002), and the Support Vector Machine of Szymanski and Zhang (2004).
However, the use of Maxion–Townsend score, shown in Table 1, provides a very different picture of the best
performance when compared to other techniques. When the algorithms are sorted by Maxion–Townsend Score,
the sequence alignment technique has only middling performance. We shall use these results as a baseline for the
improvement of our system as we examine each improvement to the system, in turn.

5. Scoring systems

In bioinformatics, scoring systems are created based on years of research regarding the forms mutation can take
in a variety of biological sequence types. Dayhoff et al. (1978), for instance, use the wealth of research performed
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Table 1
Comparison of published masquerade detection technique sorted by Maxion–Townsend score

Technique % Hit % False Positive Maxion–Townsend score

Naı̈ve Bayes (With Updating) (Maxion and Townsend,
2002)

61.5 1.3 46.3

Recursive Data Mining (Szymanski and Zhang, 2004) 62.3 3.7 59.9
Naı̈ve Bayes (No Updating) (Maxion and Townsend,
2002)

66.2 4.6 61.4

Uniqueness (Schonlau et al., 2001) 39.4 1.4 69.0
Hybrid Markov (Schonlau et al., 2001) 49.3 3.2 69.9
Sequence Alignment (Schonlau et al., 2001) 75.8 7.7 70.4
Bayes 1-Step Markov (Schonlau et al., 2001) 69.3 6.7 70.9
IPAM (Schonlau et al., 2001) 41.1 2.7 75.1
Sequence Matching (Lane and Brodley, 1997; Schonlau
et al., 2001)

36.8 3.7 85.4

Compression (Schonlau et al., 2001) 34.2 5.0 95.8

on sequences known to be closely related to create probabilistic models of mutations. Such methods are widely used
in practical applications of bioinformatics algorithms, but their creation relies heavily on extensive ground truth from
which to create the probability models. Unfortunately, in the case of audit data, such longitudinal ground truth is not
available. Since the alphabet of audit data symbols is essentially infinite, it is difficult to create observations for all,
or even most, possibilities of mutation. Hence, these probabilistic models for mutations most likely would have little
semantic meaning in terms of audit data. Instead, we must look for semantically meaningful models of mutation for
computer audit, rather than biological, data.

5.1. Modeling mutation in computer audit data

Here, we explore two possible models of mutation in computer audit data sequences. Our first model considers the
possibility of mutation through semantic, or functional, equivalence with the command grouping scoring system. This
model of mutation assumes that the user’s behavior falls into well-defined patterns of functional behaviors. Thus, when
mutation occurs within the audit data, we can assume that these changes retain the functional properties of the patterns
in the Signature, such as replacing the command for one text editor with another (e.g., replacing vi with emacs). The
second model of mutation draws upon the conclusions of Wang and Stolfo (2003), which suggest that a legitimate
user session is indicated by a fairly consistent set of audit data symbols. In our case, each user is prone to use the
same set of commands that were encountered in their signature. We refer to this set of commands known to be from
the legitimate user as the user’s lexicon. The model of mutation, therefore, allows mutation from any command in the
lexicon to any other command in the lexicon without penalty. These models of mutation offer differing explanations
for the mutations that occur in sequences of audit data, and through evaluation of these systems on the Schonlau
dataset we empirically determine which provides the best performance. For the tests performed in the remainder of
this paper, penalties for gaps in the Test and Signature sequences remain constant at −2.

Command grouping. Any useful model of mutation for audit data must be able to find which commands can be
interchanged without altering the high-level function of the patterns created by the user. The command grouping
technique does this by keeping the functional high-level definition consistent while allowing for changes in the low-
level representation of that functionality. In this scoring system, a static reward of+2 is given to exact matches. During
a mismatch, the groups to which the two commands belong are compared to determine their scoring. These groups
were manually created from a set of common UNIX commands found among all of the commands in the dataset. Each
of these groups reflects the general function of the commands within it. For instance, a group with the commands sh,
tcsh, ksh, csh, and bash would be representative of various UNIX shells. With these command groups, we now have a
model of mutation from one command to another, namely from one command in a group to another in the same group.
Furthermore, we can say that an alignment of two commands is good when a command found in the Signature aligns
with a mismatched command in the Test sequence that is in the same group, thereby representing an expected mutation
from the user’s command sequence. If a mismatch occurs in which the commands do not have the same grouping, then
an unexpected mutation has occurred and this should be penalized. In our system, we reward mismatched commands
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Fig. 4. Receiver operator characteristic curve for previous result, binary and command group scoring.

that are in the same group by adding a value of+1 to the alignment score, and penalize commands that are in different
groups by adding the value −1 to the alignment score.

Binary scoring. Previous work by Wang and Stolfo (2003) compared various features of the audit data sequences,
and found that binary information about the presence or absence of a command from the user’s lexicon performed
better than features that took into account frequency of occurrence. Our binary scoring method therefore builds upon
the results presented in Wang and Stolfo (2003) by implementing a simple scoring system where lexical mismatches
that have previously occurred in the user’s lexicon are given a positive score, and lexical mismatches that have not
previously been observed in the lexicon are given a negative score. Specifically, the binary scoring system rewards
exact matches by adding+2 to the score for the alignment. Lexical mismatches where the symbol in the Test sequence
previously occurred in the user’s lexicon are scored as +1, while other lexical mismatches are scored as −1. Thus,
any command from a given user’s signature can replace any other previously observed command from the signature,
but the use of previously unseen commands is labeled as anomalous behavior. This model of mutation is roughly
equivalent to allowing various permutations of previously observed patterns without reducing the score significantly.

5.2. Scoring results

In the following evaluation, results from sequence alignment with the simple scoring system described in Section 4
are referred to as Previous Result, while the results of the sequence alignment algorithm with our two novel scoring
systems are referred to as Command Grouping and Binary Scoring, respectively. Fig. 4 shows that the binary scoring
system vastly outperforms the command grouping system. Table 2 provides the specific Maxion–Townsend scores
for the three scoring systems, confirming the clear advantage of the binary scoring system. The results lend further
credence to results, such as those provided by Wang and Stolfo, which suggest that the best indicator of legitimate
user behavior is the previous observance of base symbols in the user’s signature (Wang and Stolfo, 2003). In fact,
when we examine several of the high scoring alignments under the binary scoring system, we find that many of the
sequences that occur are simply permutations of previously seen commands into new sequences.

6. Signature updating

As usage of the information system progresses, it is likely that the users will alter their behavior to varying degrees
based on changes to projects, or installation of new programs. This can become a serious problem if a static Signature
sequence is used to detect anomalies in monitored sessions. The static signature will have no way of adapting to
new user behavior, and therefore much of the variation will be considered to be masquerade attacks. As an example,
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Table 2
Comparison of sequence alignment scoring systems

Technique % Hit % False Positive Maxion–Townsend score

Binary Scoring 60.3 2.9 56.8
Previous Result (Coull et al., 2003) 75.8 7.7 70.4
Command Grouping 42.2 3.5 78.4

consider the case where a new program has been installed for the users of the information system. Since this new
program does not exist within the user’s lexicon of previously used commands, the binary scoring system that we
have previously examined in Section 5 will punish each mismatch created by the command calling this new program.

To overcome this complication, the Signature must be updated dynamically as user behavior changes. Of course,
there are several challenges involved in such updating mechanisms, namely maintaining the temporal properties of the
Signature sequence (i.e., maintaining useful patterns) and preventing tainted masquerade commands from entering the
user’s lexicon or Signature sequence. These challenges can be distilled into three tasks that the updating mechanism
must perform: (i) augmenting areas in the Signature sequence to include the new behavioral information, (ii) adding
new commands to the lexicon, and (iii) ensuring that both the Signature sequence and user lexicon remain free of
tainted commands from masquerade attacks. Previously, Maxion and Townsend performed a similar procedure on
their Naı̈ve Bayes classifier by updating the class probabilities of a command every time a Test sequence was classified
(Maxion and Townsend, 2002). To choose which class was augmented, they simply used the classification provided
by their Naı̈ve Bayes approach. Thus, if their classifier determined a particular Test sequence to be from the user,
the user’s classifier would update its probabilities to reflect the commands found in this sequence. Similarly, the non-
user classifier would be updated to reflect the new commands of non-user sequences. Note that since their technique
assumes that commands appear independently of each other, there is no need to maintain the integrity of the temporal
characteristics of the sequences. Thus, while the Maxion and Townsend method provides some insight into how to
characterize which commands should be used for updating, our sequence alignment approach requires a far more
complex updating scheme.

6.1. Updating signatures with aligned sequences

To determine the way in which the Signature sequence and the user’s lexicon should be augmented, we look to the
scoring matrix that is created during the alignment process. This scoring matrix can be used to recreate the optimal
alignment by tracing back through the matrix from the (m, n) position to the (0, 0) position. This alignment provides
us with the areas where the Test sequence has aligned well with the Signature sequence. In fact, this is an intuitive
and natural way to determine which areas of the Signature sequence should be augmented, and when new commands
should be entered into the user’s lexicon. Note that when a gap is encountered in this alignment, in either the Signature
or Test sequence, it indicates poor alignment for the opposite symbol. This is a clear indication that symbols that are
aligned with gaps should not be considered in the updating process since they are not determined to be similar.

When two symbols do align, however, they can align as an exact lexical match, a ‘good’ mismatch where the
mutations from the Signature symbol to the Test symbol is expected by our scoring system, or a ‘bad’ mismatch
where the mutation is unexpected. In the case of a match, no updating needs to be done since the correct symbol
already exists in the Signature sequence. For ‘good’ mismatches, we know that the symbol in the Test sequence
must have previously existed in the user’s lexicon since our binary scoring system uses that information to define
‘good’ mismatches. The fact that the command existed in the user’s lexicon and participated in a conserved alignment
indicates the creation of a new permutation of the user’s behavior. In the case of ‘bad’ mismatches, we know that the
user has never used the command before, since it does not exist in his lexicon, but its presence within a conserved,
high scoring alignment means that it participates in an alignment that was most likely created by the legitimate user.
Hence, such ‘bad’ mismatches could indicate the introduction of a new symbol into the user’s lexicon.

Updating the signature, therefore, becomes a simple process of finding the ‘good’ and ‘bad’ mismatches in the
alignment between the Signature and Test sequence. When a ‘good’ mismatch is encountered, we can augment the
Signature sequence by adding the Test symbol to the Signature sequence at the aligned position. For instance, if
the alignment produced a ‘good’ mismatch between vi in the Signature sequence and cd in the Test sequence, the
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Fig. 5. Receiver operator characteristic curve for signature updating compared to binary scoring and previous results.

Signature sequence would be augmented such that the position that contained vi can now match with vi or cd. Notice
that this augmentation does not destroy previous information encoded in the Signature sequence, it simply embeds
observed variations. Likewise, when a ‘bad’ mismatch is encountered, we can simply add the Test symbol to the user’s
lexicon, but make no changes to the Signature sequence. Essentially, we let this newly introduced symbol be used as
a ‘good’ mismatch in future alignments. Like Maxion and Townsend (2002), we perform our update whenever the
alignment score is greater than our masquerade detection threshold, indicating that our detection system believes the
sequence to belong to the user.

6.2. Signature updating results

In this evaluation, we use the sequence alignment algorithm with the binary scoring system as evaluated in
Section 5.2, and augment it with the addition of the signature updating procedure outlined above. The following
discussion refers to the sequence alignment algorithm with binary scoring and no updating as Binary Scoring, while
the algorithm with updating is referred to as Signature Updating.

Fig. 5 shows that the binary scoring system with the signature updating method significantly improves the results
of our sequence alignment using the binary scoring method alone. Notice that the entire ROC curve for the alignment
algorithm using signature updating is far more conserved with respect to false positives — all sensitivity levels for
the signature updating approach lie in the area below 15% false positives while the binary scoring approach lies in
the area below 50%. Moreover, Fig. 5 and Table 3 indicate that the use of signature updating provides performance
that surpasses all previous masquerade detection algorithms, in terms of both ROC curve and Maxion–Townsend
score. This result is a significant improvement to the state of the art in masquerade detection, and underscores the
significance of using sequencing information, custom mutation models, and signature updating in the development of
masquerade detection algorithms.

7. Computational requirements

Thus far, we have shown that the sequence alignment algorithm is proficient at detecting masquerade attacks in
computer audit data through evaluation on the Schonlau dataset. This evaluation, however, only tests the detection
performance of the algorithm without regard to its computational requirements. The computational efficiency of the
sequence alignment algorithm is crucial for real-time masquerade detection deployments, especially when detection
needs to be performed for multiple users utilizing an information system simultaneously. Depending on the granularity
of the audit data and its rate of generation, the computational requirements of such detection could easily become
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Table 3
Comparison of the top five masquerade detection techniques ranked by Maxion–Townsend score

Technique % Hit % False Positive Maxion–Townsend score

Sequence Alignment (Updating) 68.6 1.9 42.8
Naı̈ve Bayes (With Updating) (Maxion and Townsend,
2002)

61.5 1.3 46.3

Sequence Alignment (Binary Scoring) 60.3 2.9 56.8
Recursive Data Mining (Szymanski and Zhang, 2004) 62.3 3.7 59.9
Naı̈ve Bayes (No Updating) (Maxion and Townsend,
2002)

66.2 4.6 61.4

overwhelming for a modern information system. The computational complexity of the sequence alignment algorithm
is a rather slow O(mn), where m is the length of the Signature sequence and n is the length of the Test sequence. In
the case of the Schonlau data, this means that there are 500,000 computations (asymptotically) per monitored user
session that needs to be executed to test for masquerade attacks. Certainly, this is far too much computation to require
for each user session, especially in multi-user environments or computationally limited devices, and thus a method for
reducing the computational requirements is highly desirable.

7.1. A heuristic for aligning audit data

In essence, we must find some way of reducing the number of computations during the alignment without reducing
the quality of the alignments or allowing masquerade attacks to escape detection. Our method of reducing the
computations per alignment relies on using the heuristic that high scoring alignments are typified by a large number of
exact lexical matches in a very conserved area. In fact, this conserved area can be expected to always be of size ≤ n.
A high scoring alignment will always find that the Test sequence matches exactly with a subsequence of the Signature
sequence, with few or no gaps inserted. This implies that, during any particular alignment, only subsequences of size
≤ 2n are ever used. That is, any subsequence that is larger than 2n in size would necessarily score poorly because the
number of gaps being inserted equals or exceeds the number of matches. Therefore, we can focus on aligning the Test
sequence with the subsequences of size 2n within the Signature sequence.

Given this observation, we split the original Signature sequence into overlapping blocks of size 2n each, such that
the last n symbols of block i are also the first n symbols of block i +1. This ensures that we have all possible adjacent
pairs of the subsequences of size n. Since high scoring alignments require matches, we simply need to estimate the
number of possible matches between the Test sequence and the blocks of size 2n. A simple way to do this is to take
each distinct symbol within the Test sequence and determine its number of occurrences within the Test sequence and
within the Signature sequence, respectively. The minimum of these two numbers is the maximum number of times that
particular symbol can be matched. By summing this number over all distinct symbols in the Test sequence, we have a
heuristic for the number of matches possible between the Test sequence and the particular 2n Signature subsequence.
We need only choose the 2n subsequence(s) for which the sum of possible matches is the largest. We then align the
Test sequence only with the maximum subsequence(s), rather than blindly attempting alignment on all subsequences.
This has the effect of, in the average case, reducing the number of computations performed, since only a very small
portion of the Signature sequence is being utilized for any given masquerade detection session.

7.2. Heuristic results

We evaluate the heuristic improvement in computational requirements of the detection process by: (i) empirically
evaluating the average number of alignments needed to perform detection, and (ii) measuring the impact that this
heuristic has on the detection performance of the sequence alignment algorithm. Unfortunately, since the previously
published methods do not provide their computational requirements, our evaluation is limited to the methods
introduced in this paper. In our evaluation, we augment the previously described sequence alignment algorithm using
binary scoring and signature updating by implementing the heuristic as described above. For comparison, we refer to
sequence alignment with the heuristic as Heuristic, and the alignment algorithm without it as Signature Updating.

Through our evaluation, we found that our proposed heuristic reduces the computational requirements of the
sequence alignment algorithm significantly in the average case. Without the use of the heuristic, the sequence
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Fig. 6. Receiver operator characteristic curve for heuristic compared to signature updating.

Table 4
Comparison of the top five masquerade detection techniques sorted by Maxion–Townsend score

Technique % Hit % False Positive Maxion–Townsend score

Sequence Alignment (Updating) 68.6 1.9 42.8
Sequence Alignment (Heuristic) 66.5 1.8 44.3
Naı̈ve Bayes (With Updating) (Maxion and Townsend,
2002)

61.5 1.3 46.3

Sequence Alignment (Binary Scoring) 60.3 2.9 56.8
Recursive Data Mining (Szymanski and Zhang, 2004) 62.3 3.7 59.9

alignment algorithm requires 500,000 computations (one 5000 × 100 alignment). With our heuristic, however, the
algorithm performs only 90,000 computations (4.5 200x100 alignments) on average, and a worst case of 980,000
computations (49 200×100 alignments). Concretely, when the algorithm is run on a commodity single-core, 2.4 GHz
processor, the unmodified algorithm took 7319.5 s to complete the analysis of all users in the Schonlau dataset while
the algorithm with the heuristic took only 528.74 s. Thus, our heuristic translates to a 10-fold improvement in the
computational performance of the algorithm. More importantly, as Fig. 6 and Table 4 show, the use of this heuristic
has minimal impact on the algorithm’s ability to detect masquerade attacks.

8. Conclusion

The masquerade attack poses a serious threat to the security of information systems due to its ability to completely
undermine even state-of-the-art security technologies. To minimize the risk of these attacks compromising the security
of the information system, an automated method for detecting masquerade attacks is necessary. Previous approaches to
detecting masquerade attacks take advantage of statistical models, machine learning techniques, and string matching
(Lane and Brodley, 1997, 1998, 1999; Maxion and Townsend, 2002; Maxion, 2003; Schonlau and Theus, 2000;
Schonlau et al., 2001; Szymanski and Zhang, 2004; Wang and Stolfo, 2003). However, improvements to the accuracy
of these techniques is highly desirable in providing practical masquerade detection. Interestingly, while a wide range
of features are explored separately by these previous methods, no technique utilizes all of these features in one
mechanism. An exploratory study (Coull et al., 2003) of the use of sequence alignment algorithms in detecting
masqueraders showed that such algorithms can be made to take advantage of all of these features, and that they
can be adapted to the task of masquerade detection.
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Here, we have explored the intricacies involved in adapting the Smith–Waterman local sequence alignment
algorithm for use in masquerade detection. Though there has been significant previous work in the field of
bioinformatics, little of it is applicable to the domain of computer security. Our contributions, therefore, focused
on new methods for applying sequence alignment to audit data from information systems. In doing so, we have
presented methods for tuning the Smith–Waterman algorithm by creating semi-global alignments of the sequences.
Additionally, we discussed two scoring systems that were inspired by functional mutations found in bioinformatics
and models derived from previous work, respectively. Interestingly, our results found that functional mutation was not
a useful model for detecting masquerade attacks, and that user behavior is typified by reusing the same symbols from
within their lexicon in varying permutations.

We were also able to develop methods for dynamically updating the user signature to accommodate changes in
the user’s command usage. By recreating the alignment, our technique was able to pinpoint the areas of the user’s
signature which should be augmented with the new usage information, without violating the temporal properties of
the sequence. The implementation of this signature updating technique allowed our sequence alignment approach to
the best of all previous techniques, including Maxion and Townsend’s Naı̈ve Bayes classifier. Finally, we addressed
the computational expense of the alignment algorithm by describing methods for choosing the best subsequences of
the user signature to align with the monitored session. Through empirical evaluation, we found that this heuristic speed
up in computation imposed only a minor loss of accuracy.2 Overall, both with and without the heuristic speed up, our
sequence alignment technique provides significant advancement to the field of masquerade detection, and opens the
possibility of using such alignment techniques in other areas of anomaly detection.
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